![]() |
|||
李佼瑞 | |||
性 别: | 男 | 职 称: | 教授 |
籍 贯: | 现 居 地: | ||
毕业院校: | 无 | 专 业: | |
查看更多个人信息 | |||
出生年月: | 工作单位: | 西安财经学院 | |
邮 箱: | jiaoruili@xaufe.edu.cn | 联系电话: | |
学 历: | 其他 |
【人物简介】
李佼瑞,男,教授,数学博士 社会兼职:中国运筹学会不确定理论分会理事
【研究方向】
获得西安财经学院科研成果特等奖2项,获全国统计科研成果奖三等奖1项;
【研究成果】
主持国家自然科学基金项目1项、全国统计科研项目1项、陕西省教育厅人文社会科学研究计划项目1项;参加国家自然科学基金项目2项、陕西省自然科学基础研究计划4项;
【科研项目】
【论文著作】
近年来共发表学术论文32篇,核心期刊28篇,其中被SCI检索7篇,EI检索12篇,ISTP检索2篇,被美国数学评论5篇。参编专著1部,教学辅导1部。 主要参编教材: 1.参编《旅华游客流动模式系统研究》,北京:高等教育出版社1999; 2.主编《概率论与数理统计》学习指导,陕西:陕西人民教育出版社,2003 部分论文: 1.Stochastic Stabilization of First-Passage Failure of Rayleigh under Gaussian White-Noise Parametric Excitations. Chaos, Solitons and Fractals 23(2005)1515-1520. (SCI、Ei) 2.Maximal Lyapunov exponent and almost-sure stability for Stochastic Mathieu–Duffing Systems, Journal of Sound and Vibration 286 (2005) 395–402. (SCI、Ei、Mathematical Reviews) 3.Research on Nonlinear Stochastic Dynamical Price Model. Chaos, Solitons and Fractals 37( 2008) 1391-1396 (SCI、Ei、Mathematical Reviews) 4. Chaotic motion of Van der Pol–Mathieu–Duffing system under bounded noise parametric excitation . Journal of Sound and Vibration, 309(2008) 330-337(SCI、Ei) 5.Response of nonlinear random business cycle model with time delay state feedback. Physica A: Statistical Mechanics and its Applications. 387 (2008) 5844-5851. (SCI、Ei) 6.Dynamics of a business cycle model under harmonic and stochastic noise excitation. Far East Journal of Applied Mathematics, 38(2010),119 - 129 (Mathematical Reviews) 7.First-passage failure of quasi-non Integrable Hamiltonian systems. International Journal of Pure and Applied Mathematics. 26 (2006)21-34. (Mathematical Reviews) 8.Synchronization of network systems with delays by periodically intermittent coupling. Proceeding of The International Association for Information and Management Sciences 2009.8(ISTP) 9.An entropy maximization portfolio selection model with cost constraints. Proceeding of The International Association for Information and Management Sciences. 2009.8(ISTP) 10.First-passage failure of a business cycle model under time-delayed feedback control and wide-band random excitation. Physica A: Statistical Mechanics and its Applications. 389 (2010) 5557-5562. (SCI、Ei) 11.Linear Feedback Chaotic Control for Nonlinear Dynamical Goodwin Business Cycle Model. Proceeding of The Ninth International Association for Information and Management Sciences 2010.8 12.Identification of nonlinear VAR models using general conditional independence graphs. Statistical Methodology, Volume 8, Issue 2, March 2011, Pages 256-267(Mathematical Reviews) 13. Chaos prediction and control of Goodwin’s nonlinear accelerator model. Nonlinear Analysis: Real World Applications, Volume 12, Issue 4, August 2011, Pages 1950-1960 (SCI、Ei)